Dot Product

- $\vec{a}, \vec{b} \in \mathbb{R}^n, \vec{a} \cdot \vec{b} = \sum_{i=1}^n (a_i \cdot b_i) \in \mathbb{R}.$
- $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.
 - θ convex angle between the vectors.
- Squared norm of vector: $|\vec{a}|^2 = \vec{a} \cdot \vec{a}$.
- Alternative notation: $\vec{a} \cdot \vec{b} = \langle \vec{a}, \vec{b} \rangle$

- Matrix multiplication $C = A \cdot B \Leftrightarrow c_{ij} = \langle A_{i,.}, B_{.,j} \rangle$
- Note: $\langle \vec{a}, \vec{a} \rangle$ is always non-negative.
 - $\langle \vec{a}, \vec{b} \rangle$ measure similarity (angle)
 - $\langle \vec{a}, \vec{a} \rangle$ measures length.

Dot Product

- A geometric interpretation: the part of \vec{a} which is parallel to a unit vector in the direction of \vec{b} .
 - And vice versa!

• Projected vector:
$$\overrightarrow{a_{\parallel}} = \frac{(\overrightarrow{a} \cdot \overrightarrow{b})}{|\overrightarrow{b}|} \overrightarrow{b}$$
.

• The part of \vec{b} orthogonal to \vec{a} has no effect!

Linear Transformations

- Represented as a matrix: y = Mx, $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, $M \in \mathbb{R}^{m \times n}$
- In fact, a stack of dot products:

•
$$y = \begin{pmatrix} \langle M_{1,.}, x \rangle \\ \vdots \\ \langle M_{n,.}, x \rangle \end{pmatrix}$$

- Geometric interpretation: transforming x from an axis system on the columns of M to the canonical axis system.
- Canonical axis system: (1,0,0,0, ...) etc.
- When m = n, and the matrix is full-rank, it is a change of coordinates.

Special Linear Transformations

- Rotation matrix in \mathbb{R}^2 : $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$.
- What you learned: rotates a point p = (x, y) by angle θ in CCW direction.
- Alternative interpretation: transforms p from its representation in a rotated axis system to its representation in the canonical one.
 - Watch chalkboard!

Cross Product

• Typically defined only for \mathbb{R}^3 .

•
$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y, b_x a_z - b_z a_x, a_x b_y - a_y) \in \mathbb{R}^3$$
.

• Or more generally:

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ \hat{x} & \hat{y} & \hat{z} \end{vmatrix}$$

Cross Product

- The result vector is orthogonal to both vectors.
 - Direction: Right-hand rule.
 - Normal to the plane spanned by both vectors.
- Its magnitude is $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$.
 - Parallel vectors ⇔ cross product zero.
- The part of \vec{b} parallel to \vec{a} has no effect on the cross product!
- Geometric interpretation: axis of shortest rotation between \vec{a} and \vec{b} .

 $\vec{b} = \mathbf{R}_{\vec{a} \times \vec{b}}(\theta)\vec{a}$

|a×b|

Symmetric Bilinear Maps

- Also denoted as "2-tensors".
- $M: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, M(\vec{u}, \vec{v}) = c.$
- Take two vectors into a scalar.
- Symmetry: $M(\vec{u}, \vec{v}) = M(\vec{v}, \vec{u})$
- Linearity: $M(a\vec{u} + b\vec{w}, \vec{v}) = aM(\vec{u}, \vec{v}) + bM(\vec{w}, \vec{v}).$
 - The same for \vec{v} for symmetry.
- Can be represented by symmetric $n \times n$ matrices: $c = \vec{u}^T M \vec{v}$.

Metric

- *M* is positive definite if for every \vec{u} , $M(\vec{u}, \vec{u}) > 0$.
 - Consequently, negative-definite, positive semidefinite (≥ 0).
- Interpretation:
 - *M* is a generalized dot product, or a metric.
 - The original dot product: simply $M = I_{nxn}$.
 - It's only a true metric (=non-negative) if indeed M is PSD.
- Often notated $\langle \vec{a}, \vec{b} \rangle_M$.
 - Then, $\langle \vec{a}, \vec{a} \rangle_M$ is "the squared length of \vec{a} in the metric of M".

Functions of Several Variables

• A single function of several variables:

$$f: \mathbb{R}^n \to \mathbb{R}, f(x_1, x_2, \cdots, x_n) = y.$$

• Partial derivative vector, or gradient, is a vector:

Multi-Valued Functions

• A vector-valued function of several variables:

$$f: \mathbb{R}^n \to \mathbb{R}^m, f(x_1, x_2, \cdots, x_n) = (y_1, y_2, \cdots, y_m).$$

- Can be viewed as a change of coordinates, or a mapping.
 - Recall: Linear functions $\Leftrightarrow \mathbb{R}^{m \times n}$ matrices.
- The derivatives form a matrix, denoted as the Jacobian:

$$\nabla f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \vdots & \frac{\partial y_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial y_n}{\partial x_1} & \vdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix}$$

$f: \mathbb{R}^n \to \mathbb{R}^m, f(x_1, x_2, \cdots, x_n) = (y_1, y_2, \cdots, y_m)$

Jacobian Measures Deformation

- Consider two points $p, p + \Delta p$, where Δp is very small.
- Taylor series:

$$f(p + \Delta p) \approx f(p) + J_f \Delta p$$

- 1st-order linear approximation.
- Original infinitesimal squared length: $\langle \Delta p, \Delta p \rangle$.
- Target length after map:

$$\begin{array}{l} \langle f(p + \Delta p) - f(p), f(p + \Delta p) - f(p) \rangle \approx \\ \langle J_f \Delta p, J_f \Delta p \rangle = \langle \Delta p, \Delta p \rangle_M \end{array}$$

Where $M = (J_f^T \cdot J_f)$, a symmetric bilinear form!

• Interpretation: J_f encodes the change of lengths, or deformation.

Directional Derivative

• The change in function u in the (unit) direction \hat{d} :

 $\nabla_d u = \langle \nabla u , d \rangle$

• Formally: a map $\nabla_d : \mathbb{R}^n \to \mathbb{R}$ between direction \hat{d} and scalar $\langle \nabla u, d \rangle$

Vector Fields in 3D

- A vector-valued function assigning a vector to each point in space: $g: \mathbb{R}^3 \to \mathbb{R}^3, g(\vec{p}) = \vec{v}.$
- Physics: velocity fields, force fields, advection, etc.

http://vis.cs.brown.edu/results/images/Laidlaw-2001-QCE.011.htm

- Special vector fields:
 - Constant
 - Rotational
 - Gradient fields of scalar functions: $\vec{v} = \nabla f$.

