Dot Product

- $\vec{a}, \vec{b} \in \mathbb{R}^{n}, \vec{a} \cdot \vec{b}=\sum_{i=1}^{n}\left(a_{i} \cdot b_{i}\right) \in \mathbb{R}$.
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.
- θ convex angle between the vectors.
- Squared norm of vector: $|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$.
- Alternative notation: $\vec{a} \cdot \vec{b}=\langle\vec{a}, \vec{b}\rangle$

- Matrix multiplication $C=A \cdot B \Leftrightarrow c_{i j}=\left\langle A_{i,,}, B_{., j}\right\rangle$
- Note: $\langle\vec{a}, \vec{a}\rangle$ is always non-negative.
- $\langle\vec{a}, \vec{b}\rangle$ - measure similarity (angle)
- $\langle\vec{a}, \vec{a}\rangle$ - measures length.

Dot Product

- A geometric interpretation: the part of \vec{a} which is parallel to a unit vector in the direction of \vec{b}.
- And vice versa!
- Projected vector: $\overrightarrow{a_{\|}}=\frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|} \vec{b}$.
- The part of \vec{b} orthogonal to \vec{a} has no effect!

Linear Transformations

- Represented as a matrix: $y=M x, \mathrm{y} \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, M \in \mathbb{R}^{m \times n}$
- In fact, a stack of dot products:
- $y=\left(\begin{array}{c}\left\langle M_{1,,}, x\right\rangle \\ \vdots \\ \left\langle M_{n,,}, x\right\rangle\end{array}\right)$
- Geometric interpretation: transforming x from an axis system on the columns of M to the canonical axis system.
- Canonical axis system: ($1,0,0,0, \ldots$) etc.
- When $m=n$, and the matrix is full-rank, it is a change of coordinates.

Special Linear Transformations

- Rotation matrix in $\mathbb{R}^{2}:\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
- What you learned: rotates a point $p=(x, y)$ by angle θ in CCW direction.
- Alternative interpretation: transforms p from its representation in a rotated axis system to its representation in the canonical one.
- Watch chalkboard!

Cross Product

- Typically defined only for \mathbb{R}^{3}.
- $\vec{a} \times \vec{b}=\left(a_{y} b_{z}-a_{z} b_{y}, b_{x} a_{z}-b_{z} a_{x}, a_{x} b_{y}-a_{y}\right) \in \mathbb{R}^{3}$.
- Or more generally:

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
\hat{x} & \hat{y} & \hat{z}
\end{array}\right|
$$

Cross Product

- The result vector is orthogonal to both vectors.
- Direction: Right-hand rule.

- Normal to the plane spanned by both vectors.
- Its magnitude is $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$.
- Parallel vectors \Leftrightarrow cross product zero.
- The part of \vec{b} parallel to \vec{a} has no effect on the cross product!
- Geometric interpretation: axis of shortest rotation between \vec{a} and \vec{b}.

$$
\vec{b}=\mathrm{R}_{\vec{a} \times \vec{b}}(\theta) \vec{a}
$$

- Another geometric interpretation: $|\vec{a} \times \vec{b}|=A_{\text {parallelogram }}$.

Symmetric Bilinear Maps

- Also denoted as " 2 -tensors".
- $M: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, M(\vec{u}, \vec{v})=c$.
- Take two vectors into a scalar.
- Symmetry: $M(\vec{u}, \vec{v})=M(\vec{v}, \vec{u})$
- Linearity: $M(a \vec{u}+b \vec{w}, \vec{v})=a M(\vec{u}, \vec{v})+b M(\vec{w}, \vec{v})$.
- The same for \vec{v} for symmetry.
- Can be represented by symmetric $n \times n$ matrices: $\mathrm{c}=\vec{u}^{T} M \vec{v}$.

Metric

- M is positive definite if for every $\vec{u}, M(\vec{u}, \vec{u})>0$.
- Consequently, negative-definite, positive semidefinite (≥ 0).
- Interpretation:
- M is a generalized dot product, or a metric.
- The original dot product: simply $M=I_{n x n}$.
- It's only a true metric (=non-negative) if indeed M is PSD.
- Often notated $\langle\vec{a}, \vec{b}\rangle_{M}$.
- Then, $\langle\vec{a}, \vec{a}\rangle_{M}$ is "the squared length of \vec{a} in the metric of M ".

Functions of Several Variables

- A single function of several variables:

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=y
$$

- Partial derivative vector, or gradient, is a vector:

$$
\nabla f=\left(\frac{\partial y}{\partial x_{1}}, \cdots, \frac{\partial y}{\partial x_{n}}\right)
$$

- In the direction of steepest ascent.

Multi-Valued Functions

- A vector-valued function of several variables:

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(y_{1}, y_{2}, \cdots, y_{m}\right)
$$

- Can be viewed as a change of coordinates, or a mapping.
- Recall: Linear functions $\Leftrightarrow \mathbb{R}^{m \times n}$ matrices.
- The derivatives form a matrix, denoted as the Jacobian:

$$
\nabla f=\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \vdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\cdots & & \cdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \vdots & \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right)
$$

Jacobian Measures Deformation

- Consider two points $p, p+\Delta p$, where Δp is very small.
- Taylor series:

$$
f(p+\Delta p) \approx f(p)+J_{f} \Delta p
$$

- $1^{\text {stt-order linear approximation. }}$

- Original infinitesimal squared length: $\langle\Delta p, \Delta p\rangle$.
- Target length after map:

$$
\begin{aligned}
& \langle f(p+\Delta p)-f(p), f(p+\Delta p)-f(p)\rangle \approx \\
& \left\langle J_{f} \Delta p, J_{f} \Delta p\right\rangle=\langle\Delta p, \Delta p\rangle_{M}
\end{aligned}
$$

Where $M=\left(J_{f}{ }^{T} \cdot J_{f}\right)$, a symmetric bilinear form!

- Interpretation: J_{f} encodes the change of lengths, or deformation.

Directional Derivative

- The change in function u in the (unit) direction \hat{d} :

$$
\nabla_{d} u=\langle\nabla u, d\rangle
$$

- Formally: a map $\nabla_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ between direction \hat{d} and scalar $\langle\nabla u, d\rangle$

Vector Fields in 3D

- A vector-valued function assigning a vector to each point in space: $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, g(\vec{p})=\vec{v}$.
- Physics: velocity fields, force fields, advection, etc.
- Special vector fields:
- Constant
- Rotational
- Gradient fields of scalar functions: $\vec{v}=\nabla f$.

